Descubren en la EEI una bacteria capaz de revolucionar la agricultura espacial
Las futuras colonias espaciales necesitarán cultivar sus propios alimentos y hacerlo fuera de las condiciones de la Tierra no será una tarea sencilla. Ahora, un inesperado hallazgo a bordo de la Estación Espacial Internacional de varias cepas de bacterias desconocidas hasta la fecha podría proporcionar el combustible que necesitan las plantas para resistir a las duras condiciones espaciales.
Un grupo de investigadores de EE.UU. y la India, han descubierto cuatro cepas de bacterias que viven en diferentes lugares de la Estación Espacial Internacional, tres de las cuales eran, hasta ahora, completamente desconocidas para la ciencia. Su estudio ha sido publicado en la revista Frontiers in Microbiology.
Tres de las cuatro cepas fueron aisladas en 2015 y 2016: una se encontró en un panel superior de la estación de investigación; la segunda, en la cúpula; la tercera, en la superficie de la mesa del comedor. Mientras, la cuarta se halló en un antiguo filtro de aire HEPA devuelto a la Tierra en 2011.
Inscríbete a nuestro curso y aprende de la
Una de las cepas se identificó como Methylorubrum rhodesianum, las otras tres no se habían descubierto previamente. Al ser secuenciadas, los expertos encontraron que todas pertenecen a una nueva especie y denominaron a las variedades como IF7SW-B2T, IIF1SW-B5 e IIF4SW-B5. No obstante, sus análisis genéticos revelaron que todas están estrechamente relacionadas con Methylobacterium indicum.
El equipo ha propuesto llamar a la nueva especie Methylobacterium ajmalii en honor a Ajmal Khan, un reconocido investigador indio de la biodiversidad. Según el estudio, el hallazgo también está estrechamente relacionado con una especie ya conocida llamada M. indicum, las cuatro cepas pertenecen a la familia de bacterias Methylobacterium, cuyos ejemplares se encuentran en el suelo y el agua dulce. Estos microorganismos participan en la fijación de nitrógeno, el crecimiento de las plantas y pueden ayudar a detener los patógenos en la vegetación.
Los astronautas que viven en la estación han estado cultivando pequeñas cantidades de alimentos durante años, por lo que no es sorprendente que hayan aparecido microbios relacionados con las plantas a bordo de la EEI, los investigadores creen que lo más probable es que estas bacterias procedieran de la Tierra ya que no todos los microbios sucumben a los procesos de esterilización previos al envío de material al espacio, por lo que posiblemente viajasen como polizones o provengan de mutaciones de otras que sí llegaron desde nuestro planeta.
Inscríbete a nuestro curso y aprende de la
Estación Espacial Internacional
Sea como sea, lo cierto es que su hallazgo es una gran oportunidad para el cultivo de plantas en microgravedad. Ya han demostrado hacerlo bien. Por eso, estos investigadores han secuenciado su genoma, en busca de aquellos genes implicados en las labores de jardinería de estas cepas. De momento, han dado con varios involucrados en el crecimiento de las plantas.
Y tomando en cuenta que estos microorganismos pueden sobrevivir a las duras condiciones de la EEI, los científicos sometieron las cuatro cepas a un análisis genético para buscar características que puedan "contribuir al desarrollo de cultivos de plantas autosostenibles para misiones espaciales a largo plazo en el futuro".
Pero aún será necesario seguir estudiándolas para saber más. Mientras tanto, está claro que, para ser un buen agricultor espacial, no debemos menospreciar la labor de las bacterias.
Proyectos hidalguenses llegan a Estación Espacial Internacional
La transferencia del conocimiento del Programa Educativo (PE) de Ingeniería en Aeronáutica que se imparte en la Universidad Politécnica Metropolitana de Hidalgo (UPMH), ha llevado a los alumnos atraídos por el área aeroespacial a participar en programas como: el “International Air and Space Program” (IASP) coordinado por AEXA en conjunto con el centro de investigaciones de la NASA. Las estancias, las prácticas y las asesorías científicas son una mejora de estándares académicos. Tanto en 2018 como en 2019, tres aeronáuticos obtuvieron el primer lugar, respectivamente en el concurso “International Air and Space Program” de la NASA.
Pedro Estrada Cruz, originario del municipio de Atitalaquia, formó parte del equipo de jóvenes de otras universidades y naciones, que obtuvieron el primer sitio en 2018 en el Johnson Space Center en Houston, Texas. La misión asignada fue exponer un proyecto que, al ser lanzado al exterior, no fuese probado antes, idóneo a la investigación de materiales resistentes y utilizarse en el espacio. El premio a su talento fue compensado con ubicar su proyecto al módulo MISSE-FF (Materials ISS Experiment Flight Facility) de la EEI, lanzado en la misión CYGNUS NG-11; el 17 de abril de 2019, los resultados se obtendrán en mayo de 2020, cuando regrese a la Tierra.
El equipo Geo Astrobiology Investigation Activity (GAIA), desarrolló el estudio de un endolito, donde eligieron una red stone que se encuentra en lugares secos como el desierto; se cultivaron bacterias que viven en los poros de la roca. El microorganismo elegido fue un extremófilo el cual crece en condiciones extremas de temperatura. Existen categorías como: los Acidófilos que viven (en bajos niveles de acidez), Alcalófilos (en altos niveles de acidez), y los Termófilos (en muy bajas o muy altas temperaturas). Para este proyecto optaron por un termófilo que tiene capacidades de resistir altas temperaturas o bajas. Con esta hipótesis, buscan comprobar la teoría de la Panspermia, la cual presenta que la caída de un meteorito en la Tierra detonó la vida en nuestro planeta; y lo mismo podría suceder, si se hace en otro planeta como Marte. En noviembre de 2019, por segundo año consecutivo en el IASP, Andrés Romero Badillo originario de Pachuca y Rafael Legorreta Castañeda de Tulancingo; durante su estancia en el Centro de Investigaciones en el Space & Rocket Center en Huntsville, Alabama de la NASA, lograron el primer lugar y con ello la oportunidad de que su proyecto IXHEL (Diosa maya de la luna), se lance al espacio en mayo de 2020.
El reto para el equipo, proponer un material no probado en el espacio, capaz de resistir altos niveles a la radiación y a las condiciones extremas, aplicado para las aeronaves y uso en la tierra. En su primera fase, investigan el uso de la cerámica de tipo hexaferriteara la protección de la radiación UV, así como su comportamiento en condiciones extremas de temperatura, presión y vacío en el espacio. Como reconocimiento, su proyecto IXHEL, será enviado al espacio en mayo de 2020 en Cabo Cañaveral, Florida. Para ambos proyectos AEXA y NASA concretan presupuesto. Esperemos resultados y su impacto científico.
El Río Tinto y sus cianobacterias sirven a la NASA para preparar la exploración del planeta rojo
En la sierra de Padre Caro, se encuentra el río Tinto que recorre unos 100 kilómetros de la provincia de Huelva. El origen de su peculiar color está en el alto contenido en sulfuros de metales pesados. Unas sales ferruginosas y el sulfato férrico que no solo tienen un impacto en el pH del río también constituyen un ecosistema extremo ideal para estudiar la presencia de algunos microorganismos.
Por sus peculiaridades, la NASA llegó a una colaboración con el Centro español de Astrobiología (CAB, CSIC-INTA) para estudiar la zona de nacimiento del río Tinto. Debido a la similitud entre las condiciones ambientales del río y las que podrían darse en el planeta Marte.
La Faja pirítica ibérica: una reserva que nos transporta a Marte
La sierra y su alta concentración de sulfuros ha convertido al lugar en polo de atracción para la actividad minera, desde la etapa de íberos y fenicios. En 2003, la NASA incluyó a la provincia de Huelva en su proyecto astrobiológico MARTE. El objetivo es analizar la vida en condiciones extremas, normalmente letales para la mayoría de las criaturas, pero posible para algunos organismos extremófilos.
"Algunas cianobacterias están entre los microorganismos más resistentes conocidos. Nos ha sorprendido encontrarlas en el subsuelo porque hasta ahora siempre se habían visto asociadas a la presencia, al menos ocasional, de luz", explica Fernando Puente Sánchez, del Centro Nacional de Biotecnología del CSIC, a National Geographic.
Estas cianobacterias son capaces de realizar la fotosíntesis oxigénica y representan uno de los microorganismos más antiguos de nuestro planeta. A raíz del descubrimiento, el NASA Ames Research Center y el CAB han continuado sus investigaciones para preparar la campaña de Marte y experimentar con la recogida de muestras.
Las condiciones de las aguas del río Tinto cuentan con una gran concentración de jarosita, un mineral de azufre y hierro muy presente en Marte; su agua ácida tiene un pH entre 1,3 y 3, con un sulfato entre 0,7 y 14 g/l y una concentración de hierro entre 0,05 y 4,2 g/l. No es descabellado imaginar que un río en Marte pudiera tener un ecosistema microbiológico similar. Quizás no en el presente, pero sí en el pasado. Es por eso por lo que el estudio del río supone un excelente campo de pruebas para la exploración de Marte.
La misión ExoMars de la Agencia Espacial Europea (ESA) pretendía perforar el suelo para buscar vida subterránea. Inicialmente prevista para 2020, la Covid-19 ha obligado a posponerla a octubre de 2022.
¿Te gustaría aprender más de Marte?
El Hubble captura una estrella gigante al borde de la destrucción
Para celebrar el 31 aniversario del lanzamiento del Telescopio Espacial Hubble de la NASA, los astrónomos apuntaron el famoso observatorio a una brillante "estrella famosa", una de las estrellas más brillantes que se ven en nuestra galaxia, rodeada por un halo resplandeciente de gas y polvo.
La estrella, llamada AG Carinae, está librando un tira y afloja entre la gravedad y la radiación para evitar la autodestrucción.
La capa en expansión de gas y polvo que rodea a la estrella tiene unos cinco años luz de ancho, lo que equivale a la distancia desde aquí hasta la estrella más cercana más allá del Sol, Proxima Centauri.
La enorme estructura se creó a partir de una o más erupciones gigantes hace unos 10.000 años. Las capas exteriores de la estrella volaron al espacio, como una tetera hirviendo que se desprende de su tapa y el material expulsado equivale aproximadamente a 10 veces la masa de nuestro Sol.
Estos estallidos son la vida típica de una rara raza de estrellas llamada variable azul luminosa, una breve fase convulsiva en la corta vida de una estrella ultrabrillante y glamorosa que vive rápido y muere joven. Estas estrellas se encuentran entre las estrellas más masivas y brillantes conocidas. Viven solo unos pocos millones de años, en comparación con los aproximadamente 10 mil millones de años de vida de nuestro Sol. AG Carinae tiene unos pocos millones de años y reside a 20.000 años luz de distancia dentro de nuestra galaxia, la Vía Láctea.
Las variables azules luminosas exhiben una personalidad dual: parecen pasar años en una dicha inactiva y luego estallan en un arrebato petulante. Estos gigantes son estrellas en extremo, muy diferentes de las estrellas normales como nuestro Sol. De hecho, se estima que AG Carinae es hasta 70 veces más masivo que nuestro Sol y brilla con el brillo cegador de un millón de soles.
Grandes estallidos como el que produjo la nebulosa ocurren una o dos veces durante la vida de una variable azul luminosa. Una estrella variable azul luminosa solo arroja material cuando está en peligro de autodestrucción como supernova. Debido a sus formas masivas y temperaturas súper calientes, las estrellas variables azules luminosas como AG Carinae están en una batalla constante para mantener la estabilidad.
Es una lucha de brazos abiertos entre la presión de la radiación desde el interior de la estrella que empuja hacia afuera y la gravedad que empuja hacia adentro. Esta coincidencia cósmica da como resultado que la estrella se expanda y contraiga. La presión exterior ocasionalmente gana la batalla, y la estrella se expande a un tamaño tan inmenso que se desprende de sus capas externas, como un volcán en erupción. Pero este arrebato solo ocurre cuando la estrella está a punto de desmoronarse. Después de que la estrella expulsa el material, se contrae a su tamaño normal, vuelve a asentarse y se vuelve inactivo por un tiempo.
Como muchas otras variables azules luminosas, AG Carinae permanece inestable. Ha experimentado estallidos menores que no han sido tan poderosos como el que creó la nebulosa actual.
Aunque AG Carinae está inactiva ahora, como una estrella supercaliente, continúa emitiendo una radiación abrasadora y un poderoso viento estelar (corrientes de partículas cargadas). Este flujo de salida continúa dando forma a la antigua nebulosa, esculpiendo estructuras intrincadas a medida que el gas que fluye choca con la nebulosa exterior de movimiento más lento. El viento viaja a una velocidad de hasta 670.000 millas por hora (un millón de km / h), unas 10 veces más rápido que la nebulosa en expansión. Con el tiempo, el viento caliente alcanza el material expulsado más frío, lo golpea y lo aleja más de la estrella. Este efecto de "quitanieves" ha despejado una cavidad alrededor de la estrella.
¿Quieres aprender más de la EEI? Da click aquí
El material rojo es gas hidrógeno incandescente mezclado con gas nitrógeno. El material rojo difuso en la parte superior izquierda señala donde el viento ha atravesado una región tenue de material y lo ha llevado al espacio.
Las características más destacadas, resaltadas en azul, son estructuras filamentosas con forma de renacuajos y burbujas torcidas. Estas estructuras son masas de polvo iluminadas por la luz reflejada de la estrella. Las características en forma de renacuajo, más prominentes a la izquierda y al fondo, son acumulaciones de polvo más densas que han sido esculpidas por el viento estelar. La aguda visión del Hubble revela estas estructuras de aspecto delicado con gran detalle.
La imagen fue tomada con luz visible y ultravioleta. La luz ultravioleta ofrece una vista un poco más clara de las estructuras de polvo filamentoso que se extienden hasta la estrella. El Hubble es ideal para observaciones de luz ultravioleta porque este rango de longitud de onda solo se puede ver desde el espacio.
Las estrellas masivas, como AG Carinae, son importantes para los astrónomos debido a sus efectos de largo alcance en su entorno. El programa más grande en la historia del Hubble, la Biblioteca del Legado Ultravioleta de Estrellas Jóvenes como Estándares Esenciales, está estudiando la luz ultravioleta de las estrellas jóvenes y la forma en que dan forma a su entorno.
Las estrellas variables azules luminosas son raras: se conocen menos de 50 entre las galaxias de nuestro grupo local de galaxias vecinas. Estas estrellas pasan decenas de miles de años en esta fase, un abrir y cerrar de ojos en el tiempo cósmico. Se espera que muchos terminen sus vidas en explosiones titánicas de supernovas, que enriquecen el universo con elementos más pesados más allá del hierro.
Arañas construyen telarañas sin gravedad en el espacio
La Estación Espacial Internacional (EEI) siempre ha sido el lugar perfecto para realizar experimentos. El pasado mes de noviembre se cumplieron 20 años desde que la primera misión de larga estancia llegaba a la EEI y desde entonces una gran variedad de experimentos se han realizado en microgravedad. Uno de los experimentos más recientes trata de dar respuesta a las preguntas, ¿Qué pasa con las arañas en el espacio? ¿Pueden tejer telarañas? ¿Cómo son?
En una investigación publicada en la revista científica Science of se habla de todo esto; ya que a los científicos les interesa saber cómo se comportan las arañas sin gravedad. Los investigadores observaron que las arañas de seda de oro (Trichonephila clavipes) sí pueden tejer en el espacio, pero dependen de la luz para hacerlo.
Esto significa que las arañas necesitan una fuente de luz para guiarse. Es decir, si la hay, tejen las telarañas de la forma normal, asimétricas, y esperan a sus presas en la parte superior de esta. Sin embargo, ante la falta de luz, las arañas tejen de forma simétrica, lo que es un comportamiento que se sale de lo normal.
Las arañas en el espacio
De hecho, lo que suelen hacer cuando sí hay gravedad, es tejer redes asimétricas con el centro hacia el borde superior. Después, las arañas se sitúan en ese centro, pero con la cabeza hacia abajo para echarse encima de sus presas en dirección de la gravedad. Pero ahora sabemos que, en realidad, la gravedad apenas importa para estos artrópodos.
Antes ya se habían realizado experimentos con arañas en el espacio. Sin embargo, debido a diferentes problemas a lo largo de los años, las investigaciones nunca habían sido tan concluyentes antes. Pero ahora todo ha cambiado gracias a las arañas de seda de oro.
¿Quieres saber que animales han ido al espacio? Mira el video
Página 5 de 151