¿Un huracán espacial?
Por primera vez la humanidad pudo observar el espectacular fenómeno conocido como huracán espacial, que se presenta en la parte superior de la atmósfera de la Tierra.
Un grupo de investigadores realizó la primera observación de un huracán espacial, lo que confirma su existencia después de que se había teorizado desde hace varios años.
El grupo de investigación del profesor Zhang Qinghe, de la Facultad de Ciencias Espaciales y Física del Instituto de Ciencias Espaciales de la Universidad de Shandong, publicó su hallazgo titulado “Un huracán espacial sobre la ionosfera polar de la Tierra” en la revista Nature Communications.
Un huracán de electrones y no de agua
Los huracanes espaciales son similares a los terrestres que suceden en la atmósfera baja, pero a diferencia de estos están compuestos de plasma.
Los científicos describieron al huracán espacial como un remolino de plasma de cerca de mil kilómetros de ancho ubicado a una altura de cientos de kilómetros.
El plasma es un gas en el que, debido a fuertes colisiones a alta temperatura, los átomos se rompen y los electrones negativos e iones positivos se mueven libremente.
El equipo de científicos encontró un punto parecido a un ciclón enorme y que duró alrededor de ocho horas con un diámetro de más de mil km, con múltiples brazos y una tendencia de rotación en sentido antihorario alrededor del polo norte magnético a partir de cuatro observaciones de satélites.
La investigación señala que el huracán espacial se caracteriza por una estructura en espiral con múltiples brazos porque precipita electrones en lugar de agua, una fuerte circulación de plasma con flujo horizontal cero en el centro, y un flujo de energía enorme y veloz hacia la ionosfera polar.
Los científicos creen que la presencia de plasma y de campos magnéticos puede verse en la atmósfera de otros planetas en el universo, por lo que los huracanes espaciales podrían ser un fenómeno común en la Tierra.
Este estudio ayudará a comprender mejor las interacciones entre el viento solar, la magnetosfera y la ionosfera en condiciones de baja actividad geomagnética.
¡Conoce al equipo de Artemis!
La NASA volverá a la Luna bajo el programa Artemisa para aprender a vivir y trabajar en otro mundo en beneficio de la humanidad.
Por eso ha presentado su selección para el equipo inicial de astronautas de la NASA, el Equipo Artemis, para ayudar a allanar el camino para las próximas misiones lunares, incluido el envío de la primera mujer y el siguiente hombre a caminar sobre la superficie lunar en 2024.
¡Ahora, conozcamos al equipo de Artemis!
El astronauta de la NASA Joseph Acaba
Experiencia de la NASA:
Seleccionado como especialista en misiones por la NASA en mayo de 2004. En febrero de 2006, completó un entrenamiento para candidatos a astronauta que incluyó sesiones informativas científicas y técnicas, instrucción intensiva en sistemas de transbordadores y estaciones espaciales internacionales, entrenamiento fisiológico, entrenamiento de vuelo T-38 y supervivencia en el agua y la naturaleza. Fue miembro de la Rama del Transbordador Espacial, apoyando los preparativos del lanzamiento y aterrizaje del transbordador en el Centro Espacial Kennedy, Florida.
La astronauta de la NASA Kayla Barron
Experiencia de la NASA:
Barron se presentó al servicio en agosto de 2017 y completó dos años de entrenamiento como candidato a astronauta. Actualmente está esperando la asignación de vuelo.
El astronauta de la NASA Raja Chari
Experiencia en la NASA:
Chari se presentó al servicio en agosto de 2017 y completó dos años de capacitación como candidato a astronauta. Actualmente está esperando la asignación de vuelo.
El astronauta de la NASA Matthew Dominick
Experiencia en la NASA:
Dominick se presentó al servicio en agosto de 2017 y completó dos años de capacitación como candidato a astronauta. Actualmente está esperando la asignación de vuelo.
El astronauta de la NASA Victor Glover
Experiencia de la NASA:
Glover fue seleccionado en 2013 como uno de los ocho miembros de la clase 21 de astronautas de la NASA. En 2015, completó el entrenamiento de candidatos a astronauta, que incluyó sesiones informativas científicas y técnicas, instrucción intensiva en sistemas de la Estación Espacial Internacional.
Glover se desempeña actualmente como piloto y segundo al mando en el Crew-1 SpaceX Crew Dragon, llamado Resilience, que se lanzó el 15 de noviembre de 2020. También se desempeñará como ingeniero de vuelo en la Estación Espacial Internacional para la Expedición 64.
El astronauta de la NASA Warren Hoburg
Experiencia en la NASA:
Hoburg se presentó al servicio en agosto de 2017 y completó dos años de entrenamiento como candidato a astronauta. Actualmente está esperando la asignación de vuelo.
El astronauta de la NASA Jonny Kim
Experiencia en la NASA:
Kim se presentó al servicio en agosto de 2017 y completó dos años de entrenamiento como candidato a astronauta. La capacitación incluyó instrucción técnica y operativa en los sistemas de la Estación Espacial Internacional, Operaciones de Actividades Extravehiculares (EVA), entrenamiento de vuelo T-38, robótica, entrenamiento fisiológico, entrenamiento expedicionario, geología de campo, entrenamiento de supervivencia en el agua y la naturaleza, y entrenamiento en dominio del idioma ruso.
La astronauta de la NASA Christina H. Koch
Experiencia en la NASA:
Koch formó parte de las Expediciones 59, 60 y 61 de la ISS. Se lanzó el 14 de marzo de 2019 desde el cosmódromo de Baikonur en una nave espacial Soyuz con el astronauta de la NASA Nick Hague y el cosmonauta ruso Alexey Ovchinin. Las tripulaciones en las que trabajó contribuyeron a cientos de experimentos en biología, ciencias de la Tierra, investigación humana, ciencias físicas y desarrollo tecnológico. Algunos de los aspectos científicos más destacados de sus misiones incluyen mejoras en el Espectrómetro Magnético Alfa, que estudia la materia oscura, el cultivo de cristales de proteínas para la investigación farmacéutica y la prueba de impresoras biológicas 3D para imprimir tejidos en microgravedad. Koch ha pasado un total de 328 días en el espacio.
El astronauta de la NASA Kjell Lindgren
Experiencia de la NASA:
Lindgren fue seleccionado en junio de 2009 como uno de los nueve miembros de la vigésima clase de astronautas de la NASA. Luego de completar dos años de capacitación y evaluación, se le asignaron tareas técnicas en la rama del Comunicador de Naves Espaciales (CAPCOM) y la rama de Actividad Extravehicular (EVA). Lindgren se desempeñó como CAPCOM líder para la Expedición 30.
La astronauta de la NASA Nicole A. Mann
Experiencia de la NASA:
Mann fue seleccionada en junio de 2013 como uno de los ocho miembros de la clase 21 de astronautas de la NASA. Se ha desempeñado como Oficial de Capacitación y Seguridad T-38 y más recientemente completó una gira como Asistente del Jefe de Exploración. Dirigió el cuerpo de astronautas en el desarrollo de la nave espacial Orion, el Sistema de lanzamiento espacial (SLS) y los Sistemas de exploración terrestre (EGS). Actualmente se está entrenando para la prueba de vuelo de la tripulación de la nave espacial Starliner de Boeing, el primer vuelo tripulado para ese vehículo.
La astronauta de la NASA Anne McClain
Experiencia de la NASA:
McClain fue seleccionada en junio de 2013 como uno de los ocho miembros de la clase 21 de astronautas de la NASA. Su entrenamiento de candidato a astronauta incluyó sesiones informativas científicas y técnicas, instrucción intensiva en sistemas de la Estación Espacial Internacional, caminatas espaciales, robótica, entrenamiento fisiológico, entrenamiento de vuelo T-38 y entrenamiento de supervivencia en el agua y la naturaleza. Completó la formación de candidatos a astronauta en julio de 2015 y ahora está calificada para futuras asignaciones.
Anne McClain se desempeñó recientemente como ingeniera de vuelo en la Estación Espacial Internacional para las Expediciones 58 y 59.
La astronauta de la NASA Jessica Meir
Experiencia en la NASA:
De 2000 a 2003, Meir trabajó para la Instalación de Investigación Humana de Lockheed Martin (Centro Espacial Johnson de la NASA), apoyando la investigación de fisiología humana en el transbordador espacial y la Estación Espacial Internacional. Meir fue seleccionado en junio de 2013 como uno de los ocho miembros de la clase 21 de astronautas de la NASA. Su entrenamiento de candidato a astronauta incluyó sesiones informativas científicas y técnicas, instrucción intensiva en sistemas de la Estación Espacial Internacional, caminatas espaciales, robótica, entrenamiento fisiológico, entrenamiento de vuelo T-38 y entrenamiento de supervivencia en el agua y la naturaleza.
El astronauta de la NASA Jasmin Moghbeli
Experiencia en la NASA:
Moghbeli se presentó al servicio en agosto de 2017 y completó dos años de entrenamiento como candidato a astronauta. Actualmente está esperando la asignación de vuelo.
La astronauta de la NASA Kate Rubins
Experiencia de la NASA:
Rubins fue seleccionada en julio de 2009 como uno de los nueve miembros de la vigésima clase de astronautas de la NASA. Su entrenamiento incluyó sesiones informativas científicas y técnicas, instrucción intensiva en sistemas de la Estación Espacial Internacional, caminatas espaciales, robótica, entrenamiento fisiológico, entrenamiento de vuelo T-38 y entrenamiento de supervivencia en el agua y la naturaleza.
El astronauta de la NASA Frank Rubio
Experiencia en la NASA:
Rubio se presentó al servicio en agosto de 2017 y completó dos años de capacitación como candidato a astronauta. Actualmente está esperando la asignación de vuelo.
El astronauta de la NASA Scott Tingle
Experiencia de la NASA:
El Capitán Tingle fue seleccionado en julio de 2009 como uno de los nueve miembros de la vigésima clase de astronautas de la NASA.
Tingle fue asignado como ingeniero de vuelo y líder del segmento operativo de los Estados Unidos para la Expedición 54/55 (del 17 de diciembre de 2017 al 3 de junio de 2018) a bordo de la Estación Espacial Internacional. La tripulación se lanzó desde el cosmódromo de Baikonur a bordo de la nave espacial Soyuz.
La astronauta de la NASA Jessica Watkins
Experiencia de la NASA:
Watkins se presentó al servicio en agosto de 2017 y completó dos años de entrenamiento como candidato a astronauta. Su formación como candidata a astronauta incluyó sesiones informativas científicas y técnicas, instrucción intensiva en sistemas de la Estación Espacial Internacional, caminatas espaciales, robótica, entrenamiento fisiológico, entrenamiento de vuelo T-38, entrenamiento de supervivencia en el agua y la naturaleza, entrenamiento en geología y entrenamiento en habilidades expedicionarias. Actualmente está esperando la asignación de vuelo.
La astronauta de la NASA Stephanie Wilson
Experiencia de la NASA:
Wilson fue seleccionada como astronauta por la NASA en abril de 1996 e informó al Centro Espacial Johnson de la NASA en agosto de 1996. Completó dos años de entrenamiento y evaluación y se calificó para asignación de vuelo como Especialista de Misión. En mayo de 2009, Wilson fue asignado a STS-131. De 2010 a 2012, Wilson se desempeñó como jefa de la rama de integración de la estación espacial, donde fue responsable de supervisar las actualizaciones de trabajo del equipo, resolver problemas y aportar la perspectiva de la tripulación relacionada con los sistemas de la estación espacial, cargas útiles, productos de operaciones e interfaces de software. Wilson también se ha desempeñado como miembro de las Juntas de Selección de Astronautas de 2009, 2013 y 2017 y actualmente se desempeña como Jefa de Rama de Equipo de Apoyo a la Misión de la Oficina de Astronautas.
El Mars Rover Perseverance de la NASA “al volante” en Marte
Perservence se basa en cámaras de navegación izquierda y derecha. Lo que se ve aquí combina la perspectiva de dos cámaras móviles durante el primer viaje del vehículo utilizando AutoNav, su función de navegación automática.
Créditos: NASA/JPL-Caltech.
El rover más nuevo de la agencia está recorriendo el paisaje marciano utilizando un sistema de navegación automática recientemente mejorado.
El rover Perseverance, el robot de seis ruedas más nuevo de la NASA en Marte, está comenzando un viaje épico por el suelo de un cráter en busca de signos de vida antigua. El equipo del rover está inmerso en la planificación de rutas de navegación, redactando instrucciones para transmitirlas, incluso usando gafas 3D especiales para ayudar a trazar su rumbo.
El rover se irá haciendo cada vez más autónomo en su conducción, utilizando un potente sistema de navegación automática llamado AutoNav, que crea mapas en 3D del terreno, identifica peligros y planifica una ruta alrededor de cualquier obstáculo sin necesidad de una dirección adicional desde los controladores en la Tierra.
“Tenemos una capacidad llamada ‘pensar mientras conducimos’”, dijo Vandi Verma, ingeniera senior del Jet Propulsion Laboratory de la NASA en el sur de California. “El rover está analizando su conducción autónoma mientras se mueve”.
Esa capacidad, combinada con otras mejoras, podría permitir que Perseverance alcance una velocidad máxima de 120 metros por hora; su predecesor, Curiosity, equipado con una versión anterior de AutoNav, se mueve aproximadamente a 20 metros por hora mientras sube al Monte Sharp por el sureste
Vandi Verma, una ingeniera que ahora trabaja con el rover Perseverance Mars de la NASA, se ve en esta foto conduciendo el rover Curiosity. Los conductores de robots todavía utilizan las gafas 3D especiales para detectar fácilmente irregularidades en el terreno que el vehículo debería evitar.
Créditos: NASA/JPL-Caltech.
“Aceleramos AutoNav cuatro o cinco veces”, dijo Michael McHenry, líder del dominio de movilidad y parte del equipo de planificadores móviles de JPL. “Estamos conduciendo mucho más lejos en mucho menos tiempo de lo que demostró Curiosity”.
Cuando Perseverance comience su primera campaña científica en el cráter Jezero, AutoNav será un instrumento clave para ayudar a desarrollar el trabajo.
Este cráter hace miles de millones de años, fue un lago, cuando Marte estaba más húmedo que hoy, y el destino de Perseverance es un delta de un río seco en el borde del cráter. Si alguna vez hubo vida en Marte, allí podrían encontrarse allí signos. El rover recolectará muestras a lo largo de unos 15 kilómetros, luego preparará las muestras para que a través de una misión futura, se recolecten y se traigan a la Tierra para su análisis.
“Vamos a poder llegar a lugares a los que los científicos quieren ir, mucho más rápido”, dijo Jennifer Trosper, que es gerente del proyecto del rover Mars 2020 Perseverance y ha trabajado en todos los rovers marcianos de la NASA. “Ahora podemos conducir a través de estos terrenos más complejos en lugar de rodearlos: no es algo que hayamos podido hacer antes”.
Llegada del rover Perseverance Mars de la NASA a Marte
Créditos: NASA/JPL-Caltech.
El factor humano
Por supuesto, Perseverance no se las arregla solo con AutoNav. La participación del equipo rover sigue siendo fundamental en la planificación y conducción de la ruta. Todo un equipo de especialistas desarrolla una ruta de navegación junto con la planificación de la actividad del rover, ya sea que esté examinando una característica geológicamente interesante en el camino a su destino o, dentro de poco tiempo, tomando muestras.
Debido al retraso de la señal de radio entre la Tierra y Marte, no se puede mover el rover hacia adelante con un joystick. El equipo escudriña las imágenes de satélite, a veces poniéndose gafas 3D para ver la superficie marciana en el entorno del rover. Cuando acaban de hacer esta gestión, envían las instrucciones a Marte y el rover las ejecuta al día siguiente.
Las ruedas de Perseverance también se modificaron para ir a la par con la rapidez con que se ejecutan esos planes: además de ser un poco más grandes en diámetro y más estrechas que las ruedas de Curiosity, cada una dispone de 48 huellas que parecen líneas ligeramente onduladas, a diferencia del patrón de 24 marcas en las de Curiosity. De esta manera, se cumplen los objetivos de tracción y durabilidad de las ruedas.
“Curiosity no pudo usar el AutoNav debido al problema del desgaste de las ruedas”, dijo Trosper. “Al principio de la misión, experimentamos el desplazamiento sobre rocas pequeñas, afiladas y puntiagudas que empezaron a perforar las ruedas, y nuestro AutoNav no las evitó”.
En la parte inferior del cuerpo de Perseverance hay mayor espacio libre que permite que el rover se desplace con seguridad sobre terrenos más accidentados, incluidas rocas grandes. Las habilidades mejoradas de navegación automática de Perseverance incluyen también a ENav, o navegación mejorada, una combinación de algoritmo y software que permite una detección más precia de peligros.
A diferencia de sus predecesores, Perseverance puede emplear uno de sus ordenadores solo para navegar en la superficie; su ordenador principal puede dedicarse a otras tareas que mantienen al rover saludable y activo.
Este Vision Compute Element, o VCE, guió a Perseverance a la superficie marciana en febrero durante su entrada, descenso y aterrizaje. Ahora se está utilizando continuamente para trazar el viaje del rover mientras lo ayuda a evitar problemas en el camino.
El rover también realiza un seguimiento de la distancia recorrida de un lugar a otro mediante un sistema llamado “odometría visual”. Perseverance captura imágenes periódicamente a medida que se mueve, comparando una posición con la siguiente para ver si se movió la distancia esperada.
Los miembros del equipo esperan que AutoNav “tome el volante”. Pero también estarán listos para intervenir cuando sea necesario.
¿Y cómo es conducir en Marte? Pues los planificadores y conductores dicen que nunca deja de fascinar.
“Jezero es increíble”, dijo Verma. “Es el paraíso de los conductores de vehículos todo terreno. Cuando te pones las gafas 3D, ves mucha más ondulación en el terreno. Algunos días solo miro las imágenes”.
El helicóptero Ingenuity de la NASA tiene éxito en su primer vuelo histórico
El lunes, el helicóptero Ingenuity Mars de la NASA se convirtió en el primer helicópero de la historia en realizar un vuelo controlado y con motor en otro planeta. El equipo de Ingenuity del Jet Propulsion Laboratory de la agencia en el sur de California confirmó que el vuelo tuvo éxito después de recibir datos del helicóptero a través del rover Perseverance a las 6:46 am EDT (3:46 am PDT).
“El Ingenuity es el último de una larga y legendaria tradición de proyectos de la NASA que logran un objetivo de exploración espacial que antes se creía imposible”, dijo el administrador interino de la NASA, Steve Jurczyk. “El X-15 fue un pionero del transbordador espacial. Mars Pathfinder y su rover Sojourner hicieron lo mismo para tres generaciones de rovers de Marte. No sabemos exactamente a dónde nos llevará Ingenuity, pero los resultados de hoy indican que el cielo, al menos en Marte, puede no ser el límite ".
Da click aquí para más información de nuestro curso "La conquista del planeta Marte"
Los datos del altímetro indican que el Ingenuity subió a su altitud máxima prescrita de 10 pies (3 metros) y mantuvo un vuelo estacionario estable durante 30 segundos. Luego descendió y volvió a tocar la superficie de Marte después de registrar un total de 39,1 segundos de vuelo.
La demostración de vuelo inicial de Ingenuity fue autónoma: pilotada por sistemas de guía, navegación y control a bordo que ejecutan algoritmos desarrollados por el equipo de JPL. Debido a que los datos deben enviarse y devolverse desde el Planeta Rojo a lo largo de cientos de millones de millas utilizando satélites en órbita y la Red de Espacio Profundo de la NASA , Ingenuity no se puede volar con un joystick y su vuelo no fue observable desde la Tierra en tiempo real.
“Ahora, 117 años después de que los hermanos Wright lograron realizar el primer vuelo en nuestro planeta, el helicóptero Ingenuity de la NASA ha logrado realizar esta asombrosa hazaña en otro mundo”, dijo Zurbuchen. “Si bien estos dos momentos icónicos en la historia de la aviación pueden estar separados por el tiempo y 173 millones de millas de espacio, ahora estarán vinculados para siempre. Como homenaje a los dos innovadores fabricantes de bicicletas de Dayton, este primero de muchos aeródromos en otros mundos ahora se conocerá como Wright Brothers Field, en reconocimiento al ingenio y la innovación que continúan impulsando la exploración”.
Este primer vuelo estuvo lleno de incógnitas. El Planeta Rojo tiene una gravedad significativamente menor, un tercio de la Tierra, y una atmósfera extremadamente delgada con solo un 1% de presión en la superficie en comparación con nuestro planeta. Esto significa que hay relativamente pocas moléculas de aire con las que las dos palas del rotor de 1,2 metros de ancho del Ingenuity pueden interactuar para lograr el vuelo. El helicóptero contiene componentes únicos, así como piezas comerciales listas para usar, muchas de la industria de los teléfonos inteligentes, que se probaron en el espacio profundo por primera vez con esta misión.
Estacionado a unos 64,3 metros de distancia en Van Zyl Overlook durante el histórico primer vuelo de Ingenuity, el rover Perseverance no solo actuó como un relé de comunicaciones entre el helicóptero y la Tierra, sino que también registró las operaciones de vuelo con sus cámaras. Las imágenes de los generadores de imágenes Mastcam-Z y Navcam del rover proporcionarán datos adicionales sobre el vuelo del helicóptero.
InSight de la NASA detecta dos terremotos considerables en Marte
Los temblores de magnitud 3.3 y 3.1 se originaron en una región llamada Cerberus Fossae, lo que respalda aún más la idea de que esta ubicación es sísmicamente activa.
El módulo de aterrizaje InSight de la NASA ha detectado dos terremotos fuertes y claros que se originan en una ubicación de Marte llamada Cerberus Fossae, el mismo lugar donde se vieron dos terremotos fuertes anteriormente en la misión. Los nuevos terremotos tienen magnitudes de 3.3 y 3.1 y los terremotos anteriores fueron de magnitud 3,6 y 3,5. InSight ha registrado más de 500 terremotos hasta la fecha, pero debido a sus señales claras, estos son cuatro de los mejores registros de terremotos para sondear el interior del planeta.
El estudio de los martemotos es una de las formas en que el equipo científico de InSight busca desarrollar una mejor comprensión del manto y el núcleo de Marte. El planeta no tiene placas tectónicas como la Tierra, pero tiene regiones volcánicamente activas que pueden causar retumbos. Los terremotos del 7 y 18 de marzo se añaden a la idea de que Cerberus Fossae es un centro de actividad sísmica.
“En el transcurso de la misión, hemos visto dos tipos diferentes de martemotos: uno que es más 'parecido a la Luna' y el otro, más 'parecido a la Tierra'”, dijo Taichi Kawamura del Institut de Physique du Globe, que ayudó a proporcionar el sismómetro de InSight y distribuye sus datos junto con la universidad de investigación suiza ETH Zurich. Las ondas de los terremotos viajan más directamente a través del planeta, mientras que las de los terremotos lunares tienden a estar muy dispersas; los martemotos caen en algún punto intermedio. "Curiosamente", continuó Kawamura, "estos cuatro terremotos más grandes, que provienen de Cerberus Fossae, son 'similares a la Tierra'".
Los nuevos terremotos tienen algo más en común con los principales eventos sísmicos anteriores de InSight, que ocurrieron hace casi un año marciano completo: ocurrieron en el verano del norte de Marte. Los científicos habían predicho que este sería nuevamente un momento ideal para escuchar los terremotos porque los vientos se volverían más tranquilos. El sismómetro, llamado Experimento Sísmico para Estructura Interior, es lo suficientemente sensible, incluso cuando está cubierto por un escudo en forma de cúpula para bloquearlo del viento y evitar que se enfríe demasiado, el viento aún causa suficiente vibración para oscurecer algunos martemotos.
El módulo de aterrizaje InSight de la NASA usó una pala en su brazo robótico para comenzar a gotear tierra sobre el cable que conecta su sismómetro a la nave espacial el 14 de marzo de 2021, el 816 ° día marciano, o sol de la misión. Los científicos esperan que aislarlo del viento facilite la detección de maremotos.
Créditos: NASA / JPL-Caltech
Mejor detección
Es posible que los vientos se hayan calmado, pero los científicos aún esperan mejorar su capacidad de "escuchar". Las temperaturas cerca del módulo de aterrizaje InSight pueden oscilar desde casi menos 100 grados Celsius por la noche a 0 grados Celsius durante el día. Estas variaciones extremas de temperatura pueden estar causando que el cable que conecta el sismómetro al módulo de aterrizaje se expanda y contraiga, dando como resultado sonidos de estallido y picos en los datos.
Entonces, el equipo de la misión ha comenzado a intentar aislar parcialmente el cable del clima. Comenzaron usando la pala en el extremo del brazo robótico de InSight para dejar caer tierra sobre el escudo térmico y contra el viento abovedado, lo que permite que gotee hacia el cable. Eso permite que el suelo se acerque lo más posible al escudo sin interferir con el sello del escudo con el suelo. Enterrar la atadura sísmica es, de hecho, uno de los objetivos de la siguiente fase de la misión, que la NASA extendió recientemente por dos años, hasta diciembre de 2022.
Da click aquí para obtener más información de nuestro curso "La conquista del planeta Marte"
A pesar de los vientos que han sacudido el sismómetro, los paneles solares de InSight permanecen cubiertos de polvo y la energía disminuye a medida que Marte se aleja del Sol. Se espera que los niveles de energía mejoren después de julio, cuando el planeta comience a acercarse nuevamente al Sol. Hasta entonces, la misión apagará sucesivamente los instrumentos del módulo de aterrizaje para que InSight pueda hibernar, despertando periódicamente para comprobar su salud y comunicarse con la Tierra.
El equipo espera mantener el sismómetro encendido durante uno o dos meses más antes de que tenga que ser apagado temporalmente.
Página 5 de 151