Apolo 11, el primer alunizaje
Este miércoles se cumplen 53 años de la llegada del hombre a la Luna. Este evento marcó un antes y un después en la exploración de otro cuerpo celeste; la tripulación estuvo conformada por Neil Armstrong, Buzz Aldrin y Michael Collins,los 3 se embarcaron a este viaje sin saber si volverían a pisar la Tierra.
Armstrong y Aldrin fueron los primeros humanos en dejar huellas en la Luna tras aterrizar con éxito en el Mare Tranquillitatis (Mar de la Tranquilidad), situado en la cara visible de nuestro satélite. Ambos permanecieron en un radio de 100 metros del módulo lunar Eagle, y pasaron aproximadamente dos horas y media fuera, tomando muestras del suelo y rocas, así como preparando experimentos científicos, mientras Collins orbitaba a bordo del módulo de mando Columbia.
Revolución en la exploración lunar
En aquel momento, apenas sabíamos acerca de la historia y la composición de nuestro satélite natural, la Luna. Y por primera vez en la historia, los científicos pudieron analizar muestras provenientes del espacio. Esto les permitió determinar la edad, la composición y muchas otras propiedades de la Luna, así como profundizar en el conocimiento del sistema solar. Las muestras pesaron un total de 21,7 kg y proporcionaron a los científicos una gran cantidad de información muy valiosa que ha sido usada hasta la fecha.
Estas son algunas de las cosas que aprendimos después de la misión:
-
Los mares lunares (las zonas oscuras que se ven al observar la luna) son antiguos flujos de lava volcánica.
-
Poco después de formarse, la luna estaba fundida casi por completo, cubierta por una capa de roca líquida. A partir de este descubrimiento, la noción de un “océano de magma” se ha aplicado también a otros los planetas rocosos.
-
Las muestras volcánicas tomadas por el Apolo 11 son muy antiguas: tienen unos 3600 millones de años, por lo que estas muestras nos abren una ventana al conocimiento de las primeras épocas de la Luna.
Experimentos en la superficie lunar
Los astronautas del Apolo 11 desplegaron una pequeña serie de experimentos durante su estancia en la superficie lunar. El paquete de experimentos científicos del Apolo (EASEP) consistió en tres partes, además de dos paneles solares para generar electricidad, tenía una antena y un sistema de comunicaciones que servía tanto para enviar datos a las estaciones terrestres como para recibir órdenes, el EASEP llevaba estos componentes:
-
Paquete de experimentos de sísmica pasiva: servía para detectar terremotos lunares “lunamotos” y demostró que era posible estudiar la luna desde el punto de vista sísmico.
-
Detector de polvo lunar: medía la acumulación de polvo y el daño que la radiación producía en las células solares. La acumulación natural de polvo en los paquetes de experimentos resultó ser mucho más baja de lo esperado.
-
Retrorreflector de medición láser lunar: este instrumento tiene espejos en forma de cubo que reflejan pulsos láser directamente de vuelta a la Tierra. El tiempo que tarda la luz en ir y volver desde la Tierra a la Luna se usa para medir la distancia a nuestro satélite con una alta precisión y ayuda a calibrar la escala del sistema solar. Este experimento se sigue utilizando actualmente.
El Apolo 11 marcó un hito en la exploración de la Luna y la colonización espacial.
Perseverance se prepara para mandar sus muestras a la Tierra
La NASA, junto con la Agencia Espacial Europea, está desarrollando una campaña para devolver las muestras marcianas a la Tierra.
El 1 de septiembre, el rover Perseverance de la NASA desplegó su brazo, colocó una broca en la superficie marciana y perforó aproximadamente 2 pulgadas, o 6 centímetros, hacia abajo para extraer un núcleo de roca. Más tarde, el rover selló el núcleo de roca en su tubo. Este evento histórico marcó la primera vez que una nave espacial empacó una muestra de roca de otro planeta que podría ser devuelta a la Tierra por una futura nave espacial.
Mars Sample Return es una campaña de múltiples misiones diseñada para recuperar los núcleos que Perseverance recolectará durante los próximos años. Actualmente en la fase de diseño conceptual y desarrollo de tecnología, la campaña es uno de los esfuerzos más ambiciosos en la historia de los vuelos espaciales, que involucra múltiples naves espaciales, múltiples lanzamientos y docenas de agencias gubernamentales.
"Devolver una muestra de Marte ha sido una prioridad para la comunidad científica planetaria desde la década de 1980, y la oportunidad potencial de lograr finalmente este objetivo ha desatado un torrente de creatividad", dijo Michael Meyer, científico principal del Programa de Exploración de Marte de la NASA con base en la NASA. Sede en Washington.
El beneficio de analizar muestras en la Tierra, en lugar de asignar la tarea a un rover en la superficie marciana, es que los científicos pueden usar muchos tipos de tecnologías de laboratorio de vanguardia que son demasiado grandes y complejas para enviarlas a Marte. Y pueden hacer análisis mucho más rápido en el laboratorio al tiempo que brindan mucha más información sobre si alguna vez existió vida en Marte.
"He soñado con tener muestras de Marte para analizar desde que era un estudiante de posgrado", dijo Meenakshi Wadhwa, científico principal del programa Mars Sample Return, que es administrado por el Laboratorio de Propulsión a Chorro de la NASA en el sur de California. “La recolección de estas muestras bien documentadas eventualmente nos permitirá analizarlas en los mejores laboratorios aquí en la Tierra una vez que sean devueltas”.
Mars Sample Return implicaría varias primicias destinadas a resolver una pregunta abierta: ¿Ha echado raíces la vida en algún lugar del sistema solar además de la Tierra? “He trabajado toda mi carrera para tener la oportunidad de responder a esta pregunta”, dijo Daniel Glavin , astrobiólogo del Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland. Glavin está ayudando a diseñar sistemas para proteger las muestras marcianas de la contaminación durante su viaje de Marte a la Tierra.
Desarrollado en colaboración con la ESA (la Agencia Espacial Europea), Mars Sample Return requeriría el lanzamiento autónomo de un cohete lleno de valiosa carga extraterrestre desde la superficie de Marte. Los ingenieros tendrían que asegurarse de que la trayectoria del cohete se alinee con la de una nave espacial que orbita Marte para que la cápsula de muestra pueda transferirse al orbitador. El orbitador luego devolvería la cápsula de muestra a la Tierra, donde los científicos estarían esperando para contenerla de manera segura antes de transportarla a una instalación segura de riesgo biológico, una que está en desarrollo ahora.
Antes de traer muestras marcianas a la Tierra, los científicos e ingenieros deben superar varios desafíos:
- Protegiendo la Tierra de Marte
Mantener las muestras químicamente prístinas para un estudio riguroso en la Tierra mientras someten su contenedor de almacenamiento a medidas extremas de esterilización para garantizar que no se entregue nada peligroso a la Tierra es una tarea que hace que Mars Sample Return sea realmente sin precedentes.
Hace miles de millones de años, el Planeta Rojo pudo haber tenido un ambiente acogedor para la vida que prospera en condiciones cálidas y húmedas. Sin embargo, es muy poco probable que la NASA recupere muestras con organismos marcianos vivos, basándose en décadas de datos de orbitadores, módulos de aterrizaje y rovers en Marte. En cambio, los científicos esperan encontrar materia orgánica fosilizada u otros signos de vida microbiana antigua.
A pesar del bajo riesgo de traer algo vivo a la Tierra, una gran cantidad de precauciones está llevando a la NASA a tomar medidas significativas para garantizar que las muestras marcianas permanezcan selladas de forma segura durante su viaje. Después de recolectar núcleos de roca en todo el cráter Jezero y colocarlos dentro de tubos hechos principalmente de titanio, uno de los metales más fuertes del mundo, Perseverance sella herméticamente los tubos para evitar la liberación involuntaria de incluso la partícula más pequeña. Luego, los tubos se almacenan en el vientre del rover hasta que la NASA decide el momento y el lugar para dejarlos caer en la superficie marciana.
Una campaña de devolución de muestras incluiría un rover de recogida de muestras de la ESA que se lanzaría desde la Tierra a finales de esta década para recoger estas muestras recolectadas por Perseverance. Los ingenieros del Centro de Investigación Glenn de la NASA en Cleveland, Ohio, están diseñando las ruedas del rover de búsqueda. El rover transferiría muestras a un módulo de aterrizaje, que se está desarrollando en el JPL. Un brazo robótico en el módulo de aterrizaje empacaría las muestras en la punta de un cohete que está siendo diseñado por el Centro Marshall de Vuelos Espaciales de la NASA en Huntsville, Alabama.
El cohete llevaría la cápsula de muestra a la órbita marciana, donde un orbitador de la ESA estaría esperando para recibirla. Dentro del orbitador, la cápsula estaría preparada para su entrega a la Tierra mediante una carga útil desarrollada por un equipo dirigido por la NASA Goddard. Esta preparación incluiría sellar la cápsula de muestra dentro de un contenedor limpio para atrapar cualquier material marciano en el interior, esterilizar el sello y usar un brazo robótico que se está desarrollando en Goddard para colocar el contenedor sellado en una cápsula de entrada a la Tierra antes del viaje de regreso a la Tierra.
Una de las tareas principales de los ingenieros de la NASA es descubrir cómo sellar y esterilizar el recipiente de la muestra sin borrar las firmas químicas importantes en los núcleos de roca del interior. Entre las técnicas que el equipo está probando actualmente se encuentra la soldadura fuerte, que consiste en fundir una aleación de metal en un líquido que esencialmente pega el metal. La soldadura fuerte puede sellar el recipiente de la muestra a una temperatura lo suficientemente alta como para esterilizar cualquier polvo que pueda quedar en la costura.
“Uno de nuestros mayores desafíos técnicos en este momento es que a centímetros del metal que se está derritiendo a unos 1.000 grados Fahrenheit (o 538 grados Celsius) tenemos que mantener estas extraordinarias muestras de Marte por debajo de la temperatura más alta que podrían haber experimentado en Marte, que es de unos 86 grados Fahrenheit (30 grados Celsius)”, dijo Brendan Feehan, el ingeniero de sistemas Goddard del sistema que capturará, contendrá y entregará las muestras a la Tierra a bordo del orbitador de la ESA. "Los resultados iniciales de las pruebas de nuestra solución de soldadura fuerte han afirmado que estamos en el camino correcto".
El diseño cuidadoso de Feehan y sus colegas permitiría que se aplicara calor solo donde se necesita para la soldadura fuerte, lo que limitaría el flujo de calor a las muestras. Además, los ingenieros pueden aislar las muestras con un material que absorba el calor y luego lo libere muy lentamente, o podrían instalar conductores que dirijan el calor lejos de las muestras.
Cualquiera que sea la técnica que desarrolle el equipo será crítica no solo para las muestras marcianas, dijo Glavin, sino para futuras misiones de retorno de muestras a Europa o Encelado,"donde podríamos recolectar y devolver muestras frescas de plumas oceánicas que podrían contener organismos extraterrestres vivos. Así que tenemos que resolver esto".
Los rigurosos esfuerzos de la NASA para eliminar el riesgo de contaminación dañina de la Tierra datan del Tratado internacional del Espacio Exterior de 1967, que pide a las naciones que eviten la contaminación de los cuerpos celestes con organismos de la Tierra y que eviten la contaminación de la Tierra a través de muestras devueltas. Para devolver de forma segura una muestra marciana a la Tierra, la NASA se está asociando no solo con la ESA, sino también con al menos 19 departamentos y agencias gubernamentales de EE. UU., Incluidos los Centros para el Control y la Prevención de Enfermedades de EE. UU. Y el Departamento de Seguridad Nacional de EE. UU.
Traducido de: NASA
¡Vacaciones en Marte! Así pasarán el tiempo estas misiones
Las misiones continuarán recopilando datos sobre el Planeta Rojo, aunque los ingenieros de la Tierra dejarán de enviarles comandos hasta mediados de octubre.
Leer más: ¡Vacaciones en Marte! Así pasarán el tiempo estas misiones
¡Pioneras en el espacio!
Estamos celebrando la semana del espacio y el tema de este año es “Mujeres en el espacio” por eso te contamos un poco de las pioneras que han hecho historia en la Tierra y en las alturas.
Katherine Johnson y los cálculos de la carrera espacial
Estas grandes figuras ya han hecho historia por conquistar el espacio, en todos los sentidos. El programa Apollo, también tiene una importante huella femenina. Margaret Hamilton tenía 33 años cuando el sistema de protección de reinicio que había diseñado permitió a Armstrong culminar el alunizaje de manera segura.
Devolverlo a casa sano y salvo era la misión del programa Lunar Orbit Rendezvous, que requería un cálculo minucioso. En este caso, Katherine Johnson, ya había sido también responsable de calcular otra misión, que en 1961 había llevado al primer estadounidense al espacio en la misión Freedom 7. Esta matemática nacida en Virginia, Estados Unidos, se incorporó a la NASA en 1953.
Valentina Tereshkova: la primera mujer astronauta
Valentina Vladimirovna Tereshkova (1937) fue la primera mujer en pisar el espacio y no era americana, pues parte de la Guerra Fría se jugaba en el espacio y la mujer era entonces un poderoso símbolo para ganar la partida.
Según El New York Times, el director de formación del programa de cosmonautas soviéticos escribió en su diario en 1961: “No podemos permitir que la primera mujer en el espacio sea estadounidense”. Esta férrea convicción llevó al espacio a una joven Valentina, que tenía experiencia como paracaidista y además estaba vinculada al Partido Comunista. En 1963 se convertiría en la primera mujer en el espacio, a bordo de la nave Vostok-6 y a la edad de 26 años. Tras una misión que duró 3 días, saltó en paracaídas desde más de 6.000 metros de altura y aterrizó en Karaganda (Kazajistán).
La primera caminata espacial femenina:
El tiempo ha pasado y las mujeres siguen forjando su camino en el espacio, tan solo hace dos años fuimos testigos de la primera caminata espacial exclusivamente femenina, con Christina Koch y Jessica Meir, de la NASA, cuando salieron a reemplazar una unidad de control de energía.
El primer paseo espacial íntegramente femenino debería haberse completado en marzo de 2019, pero un problema logístico retrasó el momento: no había dos trajes de talla mediana, por lo que solo una de las astronautas pudo participar.
Ahora la Nasa ha anunciado su intención de llevar a la primera mujer a la Luna en 2024 a través del proyecto Artemis (nombrado en honor a la hermana gemela de Apolo) y además está trabajando en un nuevo traje o unidad de movilidad extravehicular de Exploración (xEMU por sus siglas en inglés) para adaptarse de forma óptima a cada cuerpo, entendiendo así que el tallaje no será un obstáculo en esta futura misión para la inclusión de la mujer.
Turismo espacial: ¡Vacaciones en el espacio!
La cápsula de SpaceX con la primera tripulación orbital civil del mundo regresó a la Tierra, luego de tres días en el espacio. Esta es la primera vez que un cohete se dirige a la órbita con una tripulación carente de astronautas profesionales.
Los cuatro turistas espaciales amerizaron en el Atlántico frente a la costa de Florida el sábado 18 de septiembre luego de tres días en el espacio, culminando con éxito la primera misión orbital de la historia sin un astronauta profesional a bordo.
El amerizaje se produjo según lo previsto, poco después de las 19:00 horas en la costa este de Estados Unidos, según un vídeo difundido por la compañía de Elon Musk.
Una nave de SpaceX debía recuperar la cápsula antes de que se abriera la escotilla y los pasajeros pudieran finalmente salir.
"Ha sido un viaje extraordinario para nosotros, y no ha hecho más que empezar", dijo el comandante a bordo, el multimillonario Jared Isaacman, poco después del amerizaje.
Más de la misión
El objetivo declarado era marcar un punto de inflexión en la democratización del espacio, demostrando que el espacio también es accesible para tripulaciones que no han sido seleccionadas y entrenadas durante años.
Los cuatro tripulantes pasaron tres días orbitando la Tierra, más lejos que la Estación Espacial Internacional (EEI), 590 km sobre la superficie terrestre.
Orbitando a unos 28.000 km/h, dieron la vuelta al mundo más de 15 veces al día.
Otras misiones turísticas
Blue Origin
El vuelo se realizó el 20 de julio, la empresa utilizó un cohete llamado New Shepard, un propulsor de seis pisos de altura con una cápsula semioval en la punta. La cápsula de esta nave se aceleró hacia el espacio usando un motor de hidrógeno líquido, por lo que no emite gases de carbono, al llegar a los 75 kilómetros de altura se separó y siguió viajando hasta alcanzar 100 km de altitud.
Aunque llegó a la línea Karman, la cual indica el inicio del espacio, Blue Origin también se mantuvo dentro de la órbita.
Virgin Galactic
Su avión cohete Unity despegó desde Nuevo México, en Estados Unidos, para pasar un momento de ingravidez fuera de la Tierra. Poco después de una hora, regresó de manera segura a la superficie del planeta.
La misión de sir Richard Branson era clara: evaluar la experiencia para abrir estos viajes al público e impulsar la incipiente industria del turismo espacial.
Página 1 de 11